4.5 Article

Response of biochar derives from farm waste on phosphorus sorption and desorption in texturally different soils

Journal

HELIYON
Volume 9, Issue 9, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e19356

Keywords

Biochar; Soil texture; Phosphorus sorption; Desorption; Inceptisol; Langmuir and freundlich isotherms

Ask authors/readers for more resources

The study evaluated the phosphorus sorption and desorption characteristics of biochar derived from different farm waste in different textured soils. The results showed that biochar application significantly decreased the phosphorus desorption maxima and desorption constant, thereby increasing phosphorus availability.
The information on changes in phosphorus (P) sorption and desorption characteristics and transformations after biochar application to high P fixing soils is still unclear. In the present study, we evaluated the differential response of biochar derives from five different farm waste viz. Lucaena sp., Albbizia sp., Mangifera indica, Triticum aestivum and Oryza sativa applied at 1 and 3 g kg(-1) (w/w) on P sorption and desorption in three texturally different (silt loam, clay loam and sandy loam) soils. The amount of P sorbed by the clay loam was significantly (p<0.05) higher than the silt loam and sandy loam, regardless of added P concentration. The Freundlich isotherms exhibit a better fit (R-2 = 0.564-0.996 in silt loam, 0.640-0.993 in clay loam and 0.724-0.993 in sandy loam soil) to P sorption data as compared with the Langmuir isotherm. Biochar application significantly decreased the P desorption maxima and desorption constant. The R-2 values ranged from 0.447 to 0.999 in silt loam, 0.438 to 0.996 in clay loam, 0.545 to 0.989 in sandy loam. Lucaena biochar showed highest adsorption maxima, thereby suggesting highest P release, whereas soils treated with Triticum aestivum biochar had the lowest adsorption maxima in both clay loam and sandy loam soil. These results indicated that biochar application can significantly enhance P availability; the extent of which is determined by soil texture and type of biochar. The results of present study highlight that biochar application would help increase soil P availability by enhancing fertilizer-P use efficiency associated with decreased P sorption capacity due to increased flush of available-P in soil colloidal complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available