4.5 Article

Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology

Journal

HELIYON
Volume 9, Issue 8, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e18302

Keywords

Wastewater-based epidemiology; One-health approach; Multi-drug resistant tuberculosis; Molecular surveillance

Ask authors/readers for more resources

The spread of multidrug-resistant tuberculosis is a major issue in developing nations. The current methods of monitoring drug-resistant TB using clinical diagnoses and hospital records are insufficient. This study suggests using Wastewater-Based Epidemiology to monitor drug-resistant TB in African countries and investigates the impact of treated wastewater on the spread of TB drug-resistant genes. The study found variations in gene concentrations among different countries, indicating the need for additional surveillance and monitoring at a community level.
The spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting. This study proposes using Wastewater-Based Epidemiology (WBE) to monitor DR-TB in six African countries (Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa) and examines the impact of treated wastewater on the spread of TB drug-resistant genes in the environment. Using droplet-digital polymerase chain reaction (ddPCR), the study evaluated untreated and treated wastewater samples in selected African countries for TB surveillance. There was a statistically significant difference in concentrations of genes conferring resistance to TB drugs in wastewater samples from the selected countries (p-value<0.05); South African samples exhibited the highest concentrations of 4.3(& PLUSMN;2,77), 4.8(& PLUSMN;2.96), 4.4(& PLUSMN;3,10) and 4.7(& PLUSMN;3,39) log copies/ml for genes conferring resistance to first-line TB drugs (katG, rpoB, embB and pncA respectively) in untreated wastewater. This may be attributed to the higher prevalence of TB/ MDR-TB in SA compared to other African countries. Interestingly, genes conferring resistance to second-line TB drugs such as delamanid (ddn gene) and bedaquiline (atpE gene) were detected in relatively high concentrations (4.8(& PLUSMN;3,67 and 3.2(& PLUSMN;2,31 log copies/ml for ddn and atpE respectively) in countries, such as Cameroon, where these drugs are not part of the MDR-TB treatment regimens, perhaps due to migration or the unapproved use of these drugs in the country. The gene encoding resistance to streptomycin (rrs gene) was abundant in all countries, perhaps due to the common use of this antibiotic for infections other than TB. These results highlight the need for additional surveillance and monitoring, such as WBE, to gather data at a community level. Combining WBE with the One Health strategy and current TB surveillance systems can help prevent the spread of DR-TB in populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available