4.7 Article

Novel Hydrolytic Degradable Crosslinked Interpenetrating Polymeric Networks (IPNs): An Efficient Hybrid System to Manage the Controlled Release and Degradation of Misoprostol

Journal

GELS
Volume 9, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/gels9090697

Keywords

misoprostol; interpenetrating networks; crosslinker; pH responsiveness; hydrogels

Ask authors/readers for more resources

The purpose of this study was to develop pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) for the treatment of various diseases. The IPNs were able to protect the drug and achieve controlled release. The results showed that the IPNs had good thermal stability, low crystallinity, and high amorphousness. The IPNs exhibited pH-responsive characteristics and achieved better swelling and in vitro results at higher pH levels. The drug release was increased at pH 7.4, and in vivo studies showed improved pharmacokinetic properties with hydrogels. The IPN hydrogel also exhibited good blood compatibility.
Purpose: The goal of this study was to make pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) that could be used to treat different diseases. An assembled novel carrier system was demonstrated in this study to achieve multiple functions such as drug protection and self-regulated release. Methods: Misoprostol (MPT) was incorporated as a model drug in hydroxyl-propyl-methylcellulose (HPMC)- and Neocel C19-based IPNs for controlled release. HPMC- and Neocel C19-based IPNs were fabricated through an aqueous polymerization method by utilizing the polymers HPMC and Neocel C19, the initiator ammonium peroxodisulfate (APS), the crosslinker methylenebisacrylamide (MBA), and the monomer methacrylic acid (MAA). An IPN based on these materials was created using an aqueous polymerization technique. Samples of IPN were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermal analysis (TGA), and powder X-ray diffraction (PXRD). The effects of the pH levels 1.2 and 7.4 on these polymeric networks were also studied in vitro and through swelling experiments. We also performed in vivo studies on rabbits using commercial tablets and hydrogels. Results: The thermal stability measured using TGA and DSC for the revised formulation was higher than that of the individual components. Crystallinity was low and amorphousness was high in the polymeric networks, as revealed using powder X-ray diffraction (PXRD). The results from the SEM analysis demonstrated that the surface of the polymeric networks is uneven and porous. Better swelling and in vitro results were achieved at a high pH (7.4), which endorses the pH-responsive characteristics of IPN. Drug release was also increased in 7.4 pH (80% in hours). The pharmacokinetic properties of the drugs showed improvement in our work with hydrogel. The tablet MRT was 13.17 h, which was decreased in the hydrogels, and its AUC was increased from 314.41 ng h/mL to 400.50 ng h/mL in hydrogels. The blood compatibility of the IPN hydrogel was measured using different weights (100 mg, 200 mg, 400 mg, and 600 mg; 5.34%, 12.51%, 20.23%, and 29.37%, respectively). Conclusions: As a result, IPN composed of HPMC and Neocel C19 was successfully synthesized, and it is now possible to use it for the controlled release of MPT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available