4.7 Article

Reinforced ultra-high performance concrete beam under flexure and shear: Experiment and theoretical model

Journal

CASE STUDIES IN CONSTRUCTION MATERIALS
Volume 20, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.cscm.2023.e02647

Keywords

Ultra-high performance concrete; Flexural performance; Shear performance; Shear span ratio; Truss-arch model; Strut-and-tie model

Ask authors/readers for more resources

This paper investigates the influence of shear span ratios, reinforcement ratios, and material types on the flexural and shear performance of UHPC beams. The findings show that appropriate LR and SR ratios can significantly increase the load capacity of the beams. UHPC beams made with a combination of polyethylene and steel fibers exhibit the highest load capacity.
This paper investigated the influence of different shear span ratios, longitudinal (LR) and stirrup (SR) reinforcement ratios, and material types on the flexural and shear performance of reinforced ultra-high performance concrete (UHPC) beams. A series of bending tests with shear span ratios of 4.0, 1.5, and 1.0 were conducted. Results reveal that UHPC beams with a LR ratio of 2.53% exhibit 1.66, 2.00, and 1.45 times higher load capacity than that of the beams with a LR ratio of 1.34% at shear span ratios of 4.0, 1.5, and 1.0, respectively. A SR ratio of 1.40% can achieve 15% and 35% enhancement in load capacity of UHPC beams at shear span ratios of 1.5 and 1.0, respectively. The UHPC beams made with hybrid polyethylene and straight steel fibers have the highest load capacity compared to the beams with straight steel fibers and hooked steel fibers. The enhancement can achieve 8%, 5%, and 15% at shear span ratios of 4.0, 1.5, and 1.0, respectively. Furthermore, cross-section analysis, a novel truss-arch model, and strut-and-tie model were employed to theoretically calculate the load capacity of the UHPC beams with different failure modes. The relative errors of the cross-section analysis and truss-arch model are smaller than 9% and 25%. The findings of this work could provide guidelines for the structural design of UHPC beams under different loading conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available