4.8 Article

Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices

Journal

INFOMAT
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/inf2.12466

Keywords

Electronic devices; High thermal conductivity; Liquid metals; Natural polyphenols; Thermal management

Ask authors/readers for more resources

The increase in heat generation in electronic devices due to high power density and miniaturization has become a major issue affecting various aspects. Liquid metals with high thermal conductivity are promising for thermal management, but face challenges such as pump-out and surface-spreading. A biogenic supramolecular network is proposed as a diffusion barrier at copper particle-LM interfaces to overcome these challenges and achieve superior thermal conduction. The EGaIn/Cu@TA demonstrates record-high metallic-mediated thermal conductivity and fluidic stability. The incorporation of copper particles enhances heat flow, making it suitable for computer central processing units.
The exponentially increasing heat generation in electronic devices, induced by high power density and miniaturization, has become a dominant issue that affects carbon footprint, cost, performance, reliability, and lifespan. Liquid metals (LMs) with high thermal conductivity are promising candidates for effective thermal management yet are facing pump-out and surface-spreading issues. Confinement in the form of metallic particles can address these problems, but apparent alloying processes elevate the LM melting point, leading to severely deteriorated stability. Here, we propose a facile and sustainable approach to address these challenges by using a biogenic supramolecular network as an effective diffusion barrier at copper particle-LM (EGaIn/Cu@TA) interfaces to achieve superior thermal conduction. The supramolecular network promotes LM stability by reducing unfavorable alloying and fluidity transition. The EGaIn/Cu@TA exhibits a record-high metallic-mediated thermal conductivity (66.1 W m(-1) K-1) and fluidic stability. Moreover, mechanistic studies suggest the enhanced heat flow path after the incorporation of copper particles, generating heat dissipation suitable for computer central processing units, exceeding that of commercial silicone. Our results highlight the prospects of renewable macromolecules isolated from biomass for the rational design of nanointerfaces based on metallic particles and LM, paving a new and sustainable avenue for high-performance thermal management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available