4.6 Article

Finite Element Analysis Using the Crack Strain Separation Model for Reinforced Concrete Membrane

Journal

BUILDINGS
Volume 13, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/buildings13081896

Keywords

finite element model; crack strain separation; orthogonal; shear friction

Ask authors/readers for more resources

This paper presents a finite element analysis of a bi-directional orthogonal model that incorporates individual crack strain separation and tracking. The objective is to expand the current shear friction model to manage bi-directional cracking at any angle. The proposed model was recalculated to improve accuracy by separating crack strains from total strains, and comparative analyses were conducted with other models for crack orientation.
This paper presents a finite element analysis of the bi-directional orthogonal model, which incorporates individual crack strain separation and tracking. The objective of this research is to expand the current shear friction model to manage bi-directional cracking at any angle, allowing for a more universal model that can be applied to intricate structures and non-proportional loading cases. The proposed model was initially developed as a total strain-based model, with the assumption that crack strains are equivalent to total strains, but it was subsequently recalculated to improve accuracy by separating crack strains from total strains. Furthermore, a separate crack strain formulation was created to account for strains in the concrete's uncracked portions and locked-in crack strains. The article then discusses the testing of various convergence methods and loading programs to achieve high convergence. Comparative analyses of the generalized shear friction model with other models for crack orientation, and loading cases similar to those of a reinforced concrete membrane, are also presented. The MATLAB program successfully applied the bi-directional cracking model for one finite element under a uniform cyclical strain state, using a secant stiffness formulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available