4.7 Article

In Situ Synthesis of Nanostructured Composites of NiFe Layered Double Hydroxide and Polyaniline for Photocatalytic Degradation of Organic Pollutants and Remediation of Biological Contaminants

Journal

ACS APPLIED NANO MATERIALS
Volume 6, Issue 19, Pages 17406-17422

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.3c02192

Keywords

antibacterial; antibiotics degradation; LDHnanosheets; nanocomposite; photocatalyst

Ask authors/readers for more resources

This study presents the development of a solid-state mediator Ag-0-based-Z-scheme LDH/PANI/MAA/Ag heterojunction nanocomposite with intimate morphological contact interface. The synthesized nanocomposite showed enhanced photocatalytic degradation of emerging pollutants under sunlight irradiation and exhibited a large specific surface area and an excellent interface between its components. Additionally, the nanocomposite demonstrated antibacterial potential against Gram-positive and Gram-negative bacteria.
The present work discusses on the development of a solid-state mediator Ag-0-based-Z-scheme LDH/PANI/MAA/Ag heterojunction nanocomposite with an intimate morphological contact interface through an electrostatic self-assembly strategy. Here, an Ag-0-decorated layered double hydroxide (LDH) nanosheet-based polymeric nanocomposite has been synthesized by ultrasonic treatment of NiFe LDH with aniline followed by in situ polymerization-stabilization and adsorption-reduction of Ag+ ions at low temperatures. In this synthesis, a mercaptoacetic acid (MAA)-functionalized polyaniline (PANI) promotes the exfoliation of NiFe LDH and stabilizes the nanosheets (LDH) followed by successful adsorption-reduction of Ag+ ions by its chelating groups to Ag-0. The synthesized ternary photocatalyst displayed an enhanced photocatalytic degradation of emerging pollutants (Ciprofloxacin: 97.4%, Reactive Blue 4: 97.7%, and Safranin: 93.1% of degradation) under sunlight irradiation within 80 min. The enhanced photocatalytic performance of the LDH/PANI/MAA/Ag nanocomposite indicates a synergistic effect on electron transfer over components, which is systematically identified by the delayed electron-hole recombination as supported by photoluminescence and electrochemical impedance spectroscopy measurements as well as photostability of the material supported by the chronoamperometry analysis. The synthesized LDH/PANI/MAA/Ag nanocomposite possesses a large specific surface area and an excellent interface between LDH nanosheets, PANI/MAA, and Ag-0, which has been confirmed from the N-2 sorption isotherm, transmission electron microscopy, and high-resolution transmission electron microscopy studies. In addition, the antibacterial potential against Bacillus pumilus (Gram-positive) and Escherichia coli (Gram-negative) bacteria authenticates further advancement of the LDH/PANI/MAA/Ag nanocomposite as a potent material composition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available