4.7 Article

Evaluation of Wheat Genotypes under Water Regimes Using Hyperspectral Reflectance and Agro-Physiological Parameters via Genotype by Yield*Trait Approaches in Sakha Station, Delta, Egypt

Journal

AGRICULTURE-BASEL
Volume 13, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/agriculture13071338

Keywords

digital agriculture; spectral reflectance indices; drought tolerance; remote sensing; wheat breeding; stress tolerance indices

Categories

Ask authors/readers for more resources

In this study, the productivity of 50 bread wheat genotypes under different water regimes was evaluated, and drought-tolerant genotypes were identified based on various selection criteria. The results showed that Genotype 37 (Sakha 95) and Genotype 45 performed best under both well-watered and water-deficit environments, and this was also supported by the stress tolerance indices. Therefore, it is recommended to include Genotype 37 in the drought breeding program.
Drought is an environmental abiotic stress that diminishes wheat production worldwide. In the present study, we evaluated fifty bread wheat genotypes (arranged in alpha lattice design) under two main water regimes, water-deficit (two surface irrigations) and well-watered (four irrigations), at different sites in two consecutive cropping seasons, 2019/20 and 2020/21. To identify the drought-tolerant genotypes, utilized several selection/phenotyping criteria, including agronomic traits, e.g., grain yield (GY) and yield components (SM); physiological parameters such as canopy temperature (CT), leaf transpiration rate (TRN), intercellular CO2 concentration (INCO); spectral reflectance indices, e.g., Leaf Chlorophyll Index (LCI), curvature index (CI), and normalized difference vegetation index (NDVI); and stress tolerance indices (STI) were determined concurrently with the grain yield. The results revealed significant differences (p & LE; 0.01) among the environments, genotypes, and their interaction for grain yield (GY), days to heading (DH), days to maturity (DM), grain filling period (GFP), grain filling rate (GFR), Normalized difference vegetation index (NDVI), plant height (PH), and spikes per square meter (SM). The genotype plus genotype by environment (GGE) and genotype by yield*trait (GYT) biplot techniques indicated that Genotype 37 (Sakha 95) and Genotype 45 performed best under well-watered and water-deficit environments. Furthermore, the same genotypes were the best from the genotype by stress tolerance indices (GSTI) approach view. Genotype 37 (Sakha 95) was superior to the GYT selection method, with physiological parameters and spectral reflectance indices. Likewise, we can identify this genotype as low-water-tolerant based on GSTI, GYT, and SRI results and recommend involving it in the drought breeding program.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available