4.6 Article

Generating fast-twitch myotubes in vitro with an optogenetic-based, quantitative contractility assay

Journal

LIFE SCIENCE ALLIANCE
Volume 6, Issue 10, Pages -

Publisher

LIFE SCIENCE ALLIANCE LLC
DOI: 10.26508/lsa.202302227

Keywords

-

Categories

Ask authors/readers for more resources

In this study, a quantitative contractility assay based on optogenetics and particle image velocimetry was designed to induce fiber specification in vitro. Long-term intermittent light-stimulation patterns were applied to cultured myotubes, resulting in enhanced contractile functionality and advanced maturation. This strategy can be used to study fiber specification and refine muscle disease modelling.
The composition of fiber types within skeletal muscle impacts the tissue's physiological characteristics and susceptibility to disease and ageing. In vitro systems should therefore account for fiber-type composition when modelling muscle conditions. To induce fiber specification in vitro, we designed a quantitative contractility assay based on optogenetics and particle image velocimetry. We submitted cultured myotubes to long-term intermittent light-stimulation patterns and characterized their structural and functional adaptations. After several days of in vitro exercise, myotubes contract faster and are more resistant to fatigue. The enhanced contractile functionality was accompanied by advanced maturation such as increased width and up-regulation of neuron receptor genes. We observed an up-regulation in the expression of fast myosin heavy-chain isoforms, which induced a shift towards a fast-twitch phenotype. This long-term in vitro exercise strategy can be used to study fiber specification and refine muscle disease modelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available