4.5 Article

Highly Efficient Cationic/Anionic Cellulose Membranes for Removal of Cr(VI) and Pb(II) Ions

Journal

MEMBRANES
Volume 13, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/membranes13070651

Keywords

cationic/anionic cellulose membrane; oxidation; adsorption; heavy metal ions; wastewater treatment

Ask authors/readers for more resources

Cellulose membranes containing cationic and anionic groups were fabricated to achieve high adsorption capacity and low pressure drops. The adsorption performance of the membranes for Cr(VI) and Pb(II) ions was investigated, and their potential for wastewater treatment was demonstrated using spiral wound filtration cartridges.
To achieve high throughput, low-pressure drops, and high adsorption capacity of Cr(VI) and Pb(II) in industrial wastewater treatment, cellulose membranes containing cationic and anionic groups were fabricated, respectively. In this process, cost-effective cotton fabrics were oxidized using sodium periodate, followed by quaternary ammonium or sulfonation modifications. The chemical composition, surface morphology, and thermal and mechanical properties of the cellulose membranes were investigated by ATR-FTIR, solid-state NMR, SEM, TGA, and tensile experiments. Quaternary ammonium, aldehyde, and sulfonate groups were distributed on the cationic/anionic cellulose fibers as adsorption sites, which issue remarkable adsorption capability to the cellulose membranes. The highly toxic Cr(VI) and Pb(II) ions were used to challenge the adsorption capacity of the cationic and anionic cellulose membranes, respectively. The maximum adsorption capacities of Cr(VI) and Pb(II) ions were 61.7 and 63.7 mg/g, respectively, suggested by Langmuir isotherms, kinetics, and thermodynamics in the static experiments. The dynamic adsorption capability of cationic cellulose membranes against Cr(VI) ions was determined and compared with that of commercially available anionic-exchange membranes. Spiral wound filtration cartridges were fabricated by cationic and anionic cellulose membranes, respectively, and were used to adsorb Cr(VI) and Pb(II) from lab-made wastewater, respectively. The cationic cellulose cartridge can purify 4.4 L of wastewater containing 1.0 mg/L of Cr(VI) ions with a 100% removal ratio, while the pressure drop was retained at 246 Pa. Similarly, the anionic cellulose cartridge exhibited even more impressive adsorption capability; the removal ratio against Pb(II) was 99% when 8.6 L of 1.0 mg/L of Pb(II) ions containing wastewater was treated, and the pressure drop was retained at 234 Pa. A composite cartridge fabricated by the integration of cationic and anionic cellulose membranes was successfully employed to purify the wastewater containing Cr(VI) and Pb(II) simultaneously. The possible adsorption mechanism was proposed, and the recycling ability of the cellulose membranes was also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available