4.5 Article

Anatomical Connectivity of the Intercalated Cells of the Amygdala

Journal

ENEURO
Volume 10, Issue 10, Pages -

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0238-23.2023

Keywords

amygdala; anatomy; FoxP2; ITC; rabies

Categories

Ask authors/readers for more resources

The intercalated cells of the amygdala (ITCs) are understudied processing structures that play a role in conditioned fear. This study used genetic strategies to reveal the input and output connections of ITCs in mice. The results show that ITCs receive information from various brain structures and project broadly to different areas, suggesting that they may influence a wide range of behaviors.
The intercalated cells of the amygdala (ITCs) are a fundamental processing structure in the amygdala that remain relatively understudied. They are phylogenetically conserved from insectivores through primates, inhibitory, and project to several of the main processing and output stations of the amygdala and basal forebrain. Through these connections, the ITCs are best known for their role in conditioned fear, where they are required for fear extinction learning and recall. Prior work on ITC connectivity is limited, and thus holistic characterization of their afferent and efferent connectivity in a genetically defined manner is incomplete. The ITCs express the FoxP2 transcription factor, affording genetic access to these neurons for viral input-output mapping. To fully characterize the anatomic connectivity of the ITCs, we used cre-dependent viral strategies in FoxP2-cre mice to reveal the projections of the main (mITC), caudal (cITC), and lateral (lITC) clusters along with their presynaptic sources of innervation. Broadly, the results confirm many known pathways, reveal previously unknown ones, and demonstrate important novel insights about each nucleus's unique connectivity profile and relative distributions. We show that the ITCs receive information from a wide range of cortical, subcortical, basal, amygdalar, hippocampal, and thalamic structures, and project broadly to areas of the basal forebrain, hypothalamus, and entire extent of the amygdala. The results provide a comprehensive map of their connectivity and suggest that the ITCs could potentially influence a broad range of behaviors by integrating information from a wide array of sources throughout the brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available