4.5 Article

Lateralization and Time-Course of Cortical Phonological Representations during Syllable Production

Journal

ENEURO
Volume 10, Issue 10, Pages -

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0474-22.2023

Keywords

audition; clustering; electrocorticography; hemispheres; motor control; speech

Categories

Ask authors/readers for more resources

This study investigates the spatial and temporal representations of phonological units in spoken language. The researchers found that the encoding of phonological units varies depending on their duration and onset time. The location of strong speech-encoding electrodes also correlates with phonological features.
Spoken language contains information at a broad range of timescales, from phonetic distinctions on the order of milliseconds to semantic contexts which shift over seconds to minutes. It is not well understood how the brain's speech production systems combine features at these timescales into a coherent vocal output. We investigated the spatial and temporal representations in cerebral cortex of three phonological units with different durations: consonants, vowels, and syllables. Electrocorticography (ECoG) recordings were obtained from five participants while speaking single syllables. We developed a novel clustering and Kalman filter-based trend analysis procedure to sort electrodes into temporal response profiles. A linear discriminant classifier was used to determine how strongly each electrode's response encoded phonological features. We found distinct time-courses of encoding phonological units depending on their duration: consonants were represented more during speech preparation, vowels were represented evenly throughout trials, and syllables during production. Locations of strongly speech-encoding electrodes (the top 30% of electrodes) likewise depended on phonological element duration, with consonant-encoding electrodes left-lateralized, vowel-encoding hemispherically balanced, and syllable-encoding right-lateralized. The lateralization of speech-encoding electrodes depended on onset time, with electrodes active before or after speech production favoring left hemisphere and those active during speech favoring the right. Single-electrode speech classification revealed cortical areas with preferential encoding of particular phonemic elements, including consonant encoding in the left precentral and postcentral gyri and syllable encoding in the right middle frontal gyrus. Our findings support neurolinguistic theories of left hemisphere specialization for processing short-timescale linguistic units and right hemisphere processing of longer-duration units.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available