4.7 Article

Single-cell chromatin accessibility profiling of acute myeloid leukemia reveals heterogeneous lineage composition upon therapy-resistance

Journal

COMMUNICATIONS BIOLOGY
Volume 6, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s42003-023-05120-6

Keywords

-

Ask authors/readers for more resources

Single cell ATAC-sequencing reveals heterogeneous lineage composition of therapy-resistant AML cells, including stem cells, progenitors, and differentiated myeloid, erythroid, and lymphoid cells, which may contribute to therapy resistance.
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by high rate of therapy resistance. Since the cell of origin can impact response to therapy, it is crucial to understand the lineage composition of AML cells at time of therapy resistance. Here we leverage single-cell chromatin accessibility profiling of 22 AML bone marrow aspirates from eight patients at time of therapy resistance and following subsequent therapy to characterize their lineage landscape. Our findings reveal a complex lineage architecture of therapy-resistant AML cells that are primed for stem and progenitor lineages and spanning quiescent, activated and late stem cell/progenitor states. Remarkably, therapy-resistant AML cells are also composed of cells primed for differentiated myeloid, erythroid and even lymphoid lineages. The heterogeneous lineage composition persists following subsequent therapy, with early progenitor-driven features marking unfavorable prognosis in The Cancer Genome Atlas AML cohort. Pseudotime analysis further confirms the vast degree of heterogeneity driven by the dynamic changes in chromatin accessibility. Our findings suggest that therapy-resistant AML cells are characterized not only by stem and progenitor states, but also by a continuum of differentiated cellular lineages. The heterogeneity in lineages likely contributes to their therapy resistance by harboring different degrees of lineage-specific susceptibilities to therapy. Single cell ATAC-sequencing of human acute myeloid leukemia cells at the time of therapy resistance reveals a mix of stem cells, progenitors and differentiated erythroid, myeloid and lymphoid cells, a heterogeneity that may contribute to therapy resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available