4.7 Article

Article Capture and inactivation of viral particles from bioaerosols by electrostatic precipitation

Journal

ISCIENCE
Volume 26, Issue 9, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.isci.2023.107567

Keywords

-

Ask authors/readers for more resources

Infectious viral particles in bioaerosols generated during laparoscopic surgery pose a significant risk of infection for staff and patients. The use of devices that can capture and inactivate viral particles, such as electrostatic precipitation (EP), can prevent nosocomial viral spread.
Infectious viral particles in bioaerosols generated during laparoscopic surgery place staff and patients at significant risk of infection and contributed to the postponement of countless surgical procedures during the COVID-19 pandemic causing excess deaths. The implementation of devices that inactivate viral particles from bioaerosols aid in preventing nosocomial viral spread. We evaluated whether electrostatic precipitation (EP) is effective in capturing and inactivating aerosolized enveloped and non-enveloped viruses. Using a closed-system model mimicking release of bioaerosols during laparoscopic surgery, known concentrations of each virus were aerosolized, exposed to EP and collected for analysis. We demonstrate that both enveloped and non-enveloped viral particles were efficiently captured and inactivated by EP, which was enhanced by increasing the voltage to 10 kV or using two discharge electrodes together at 8 kV. This study highlights EP as an effective means for capturing and inactivating viral particles in bioaerosols, which may enable continued surgical procedures during future pandemics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available