4.7 Article

Alkanolamine-Grafted and Copper-Doped Titanium Dioxide Nanosheets-Graphene Composite Heterostructure for CO2 Photoreduction

Journal

ACS APPLIED ENERGY MATERIALS
Volume 6, Issue 21, Pages 10929-10942

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.3c01675

Keywords

graphene; CO2; photocatalyst; heterostructure; amine; CO2 conversion

Ask authors/readers for more resources

CO2 photoreduction is a method to convert carbon dioxide into fuel products, and the heterostructure of titanium dioxide nanosheets and graphene oxide is found to be an excellent photocatalyst. The photoactivity can be enhanced by grafting alkanolamine and doping copper.
CO2 photoreduction is an intriguing approach to carbon capture, utilization, and storage (CCUS). It relies on an effective photocatalyst to generate photoinduced electrons that incorporate carbon dioxide (CO2), yielding fuel products, e.g., methane, methanol, and ethanol. The heterostructure of titanium dioxide nanosheets (TNS) and graphene oxide (GO) is a sandwich-type composite consisting of two 2-dimensional nanostructures (2D-2D). It was demonstrated as an excellent candidate for CO2 photoreduction due to its outstanding charge separation ability. This research studied the photoactivity of alkanolamine-grafted TNS and alkanolamine-grafted and copper-doped TNS/GO composites. In the first experiment, triethanolamine-grafted TNS (TEA-TNS) exhibited the best ability in CO2 photoreduction compared to monoethanolamine- and diethanolamine-grafted TNS (MEA-TNS and DEA-TNS) due to the base-catalyzed hydration nature of CO2-TEA interactions. In the second experiment, we studied the photoactivity of four composites, including copper-doped TNS/GO (Cu-TNS/GO), TEA-[Cu-TNS/GO] (grafting TEA on Cu-TNS/GO), Cu-[TEA-TNS]/GO (doping Cu on TEA-TNS/GO), and TEA-Cu-TNS/GO (one-step hydrothermal synthesis with the Cu precursor, TEA, and GO). TEA-[Cu-TNS/GO] showed the best photoactivity since TEA was added last to the heterostructures, which benefited in avoiding side chelation reactions between TEA and Cu ions and ensuring TEA exposure to CO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available