4.6 Review

From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications

Journal

JOURNAL OF FUNGI
Volume 9, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/jof9100984

Keywords

adaptive laboratory evolution (ALE); bioethanol; biofuel; directed genome evolution; ethanol tolerance; ethanol production; evolutionary engineering; genome editing; metabolic engineering; Saccharomyces cerevisiae

Ask authors/readers for more resources

With increasing human population and the decline of fossil fuels, there has been a global shift towards alternative fuel sources. Ethanol has emerged as a primary alternative due to its low carbon emissions and ease of microbial production. Baker's yeast Saccharomyces cerevisiae has been the focus of research for enhanced ethanol production processes. Metabolic engineering and evolutionary engineering strategies have been employed to manipulate the ethanol metabolism genes and improve bioethanol production. This review highlights the current state of metabolic and evolutionary engineering in first- and second-generation S. cerevisiae bioethanol production processes.
Increased human population and the rapid decline of fossil fuels resulted in a global tendency to look for alternative fuel sources. Environmental concerns about fossil fuel combustion led to a sharp move towards renewable and environmentally friendly biofuels. Ethanol has been the primary fossil fuel alternative due to its low carbon emission rates, high octane content and comparatively facile microbial production processes. In parallel to the increased use of bioethanol in various fields such as transportation, heating and power generation, improvements in ethanol production processes turned out to be a global hot topic. Ethanol is by far the leading yeast output amongst a broad spectrum of bio-based industries. Thus, as a well-known platform microorganism and native ethanol producer, baker's yeast Saccharomyces cerevisiae has been the primary subject of interest for both academic and industrial perspectives in terms of enhanced ethanol production processes. Metabolic engineering strategies have been primarily adopted for direct manipulation of genes of interest responsible in mainstreams of ethanol metabolism. To overcome limitations of rational metabolic engineering, an alternative bottom-up strategy called inverse metabolic engineering has been widely used. In this context, evolutionary engineering, also known as adaptive laboratory evolution (ALE), which is based on random mutagenesis and systematic selection, is a powerful strategy to improve bioethanol production of S. cerevisiae. In this review, we focus on key examples of metabolic and evolutionary engineering for improved first- and second-generation S. cerevisiae bioethanol production processes. We delve into the current state of the field and show that metabolic and evolutionary engineering strategies are intertwined and many metabolically engineered strains for bioethanol production can be further improved by powerful evolutionary engineering strategies. We also discuss potential future directions that involve recent advancements in directed genome evolution, including CRISPR-Cas9 technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available