4.8 Editorial Material

Oxygen redox in LiNiO2 cathodes

Journal

JOULE
Volume 7, Issue 7, Pages 1408-1411

Publisher

CELL PRESS
DOI: 10.1016/j.joule.2023.06.023

Keywords

-

Ask authors/readers for more resources

Assigning oxidation states and understanding the oxygen redox mechanism are crucial for designing superior cathode materials in lithium-ion batteries. In this issue of Joule, Morris, Grey, and co-workers reported that Ni rarely participates in the redox reaction, and oxygen primarily acts as the redox center through a combination of experimental analysis and computational prediction. This work provides an opportunity to reassess the current understanding of conventional cathode materials.
Assigning oxidation states and understanding the oxygen redox mechanism is crucial for designing superior cathode materials in lithium-ion batteries. The working mechanism of stoichiometric LiNiO2 has been regarded as Ni-dominant redox with partial O contribution through covalent Ni-O bonding for several decades. However, in this issue of Joule, Morris, Grey, and co-workers reported that Ni rarely participates in the redox reaction, and oxygen primarily acts as the redox center through a combination of experimental analysis and computational prediction. Also, the highly reactive singlet O-2 formation mechanism was elucidated. This work provides an opportunity to reassess the current understanding of conventional cathode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available