4.7 Article

An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem

Journal

MATHEMATICS
Volume 11, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/math11214439

Keywords

meta-heuristic algorithm; adaptive optimization; traveling salesman problem; large-scale optimization; path optimization

Categories

Ask authors/readers for more resources

The AACO-LST algorithm proposes solutions to the dimensional catastrophe problems by improving the state transfer rule and using a 2-opt operator for local optimization. It also introduces adaptive pheromone update rules to enhance search efficiency, resulting in improved solution quality and convergence speed.
The ant colony algorithm faces dimensional catastrophe problems when solving the large-scale traveling salesman problem, which leads to unsatisfactory solution quality and convergence speed. To solve this problem, an adaptive ant colony optimization for large-scale traveling salesman problem (AACO-LST) is proposed. First, AACO-LST improves the state transfer rule to make it adaptively adjust with the population evolution, thus accelerating its convergence speed; then, the 2-opt operator is used to locally optimize the part of better ant paths to further optimize the solution quality of the proposed algorithm. Finally, the constructed adaptive pheromone update rules can significantly improve the search efficiency and prevent the algorithm from falling into local optimal solutions or premature stagnation. The simulation based on 45 traveling salesman problem instances shows that AACO-LST improves the solution quality by 79% compared to the ant colony system (ACS), and in comparison with other algorithms, the PE of AACO-LST is not more than 1% and the Err is not more than 2%, which indicates that AACO-LST can find high-quality solutions with high stability. Finally, the convergence speed of the proposed algorithm was tested. The data shows that the average convergence speed of AACO-LST is more than twice that of the comparison algorithm. The relevant code can be found on our project homepage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available