4.7 Article

Ship Trajectory Prediction: An Integrated Approach Using ConvLSTM-Based Sequence-to-Sequence Model

Journal

Publisher

MDPI
DOI: 10.3390/jmse11081484

Keywords

trajectory prediction; trajectory clustering; AIS; convolutional LSTM network; sequence-to-sequence (Seq2Seq); deep learning

Ask authors/readers for more resources

This paper proposes a trajectory prediction model integrating ConvLSTM and Seq2Seq models, which aims to improve the accuracy of ship trajectory prediction by extracting temporal and spatial features. Experimental results show that the proposed model performs better than other benchmark models, providing a promising solution for improving ship navigation safety and quality.
Maritime transportation is one of the major contributors to the development of the global economy. To ensure its safety and reduce the occurrence of a maritime accident, intelligent maritime monitoring and ship behavior identification have been drawing much attention from industry and academia, among which, the accurate prediction of ship trajectory is one of the key questions. This paper proposed a trajectory prediction model integrating the Convolutional LSTM (ConvLSTM) and Sequence to Sequence (Seq2Seq) models to facilitate simultaneous extraction of temporal and spatial features of ship trajectories, thereby enhancing the accuracy of prediction. Firstly, the trajectories are preprocessed using kinematic-based anomaly removal and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) to improve the data quality for the training process of trajectory prediction. Secondly, the ConvLSTM-based Seq2seq model is designed to extract temporal and spatial features of the ship trajectory and improve the performance of long-time prediction. Finally, by using real AIS data, the proposed model is compared with the Seq2Seq and Bidirectional LSTM based on attention mechanism (Bi-Attention-LSTM) models to verify its effectiveness. The experimental results demonstrate that the proposed model achieves excellent performance in predicting turning trajectories, good predictive accuracy on straight line motions, and greater improvement in prediction accuracy compared to the other two benchmark models. Overall, the proposed model represents a promising contribution to improving ship trajectory prediction accuracy and may enhance the safety and quality of ship navigation in complex and volatile marine environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available