4.7 Article

Impact of drying-wetting cycles on the small strain behaviour of compacted clay

Journal

TRANSPORTATION GEOTECHNICS
Volume 42, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.trgeo.2023.101063

Keywords

Drying -wetting cycles; Small strain stiffness; Compacted clay; Ultrasonic pulse transmission testing; Geostructures; Amplitude of drying and wetting

Ask authors/readers for more resources

Small strain shear modulus (Gmax) is an important parameter for assessing the performance of compacted soils under transportation infrastructure. Climate patterns and moisture fluctuations affect the small strain properties of compacted soils. This study evaluated the small strain shear behavior of kaolin clay in drying and wetting cycles.
Small strain shear modulus (Gmax) is an important parameter for assessing the performance of compacted soils that underlie typical transport infrastructure assets such as railway tracks. This is particularly important when considering changes in climate patterns, which are expected to yield larger seasonal soil-atmosphere moisture fluctuations. This in turn results in the progressive variation of the small strain properties of compacted soils during their service life (i.e. drying and wetting). In this study, the small strain shear behaviour was evaluated for an intermediate plasticity clay (i.e. kaolin) in a series of drying and wetting cycles. Four different dying and wetting boundaries were considered to explore a wide range of moisture amplitudes during 10 drying-wetting cycles. Drying and wetting was controlled using gravimetric water content in order to mimic realistic field conditions typically observed at substructure level. An ultrasonic pulse transmission method was used to capture the change in small strain stiffness and volume at discrete points during the drying-wetting cycles. The results reveal clear distinctions in behaviour for all four boundaries considered, with wetting boundaries having the greatest influence on behaviour. In this instance, specimens brought to full saturation during wetting exhibited an increase in the small strain shear modulus during progressive drying-wetting cycles. However, a reduction was observed when the wetting boundary was restricted to the compacted state. Measured volume changes were also in agreement with these findings, however there was some evidence of volume increase when drying to residual conditions. The results suggest that this is associated with the formation of the partial pendular state where a loss of capillary contacts between particles occurs. Furthermore, when all data for 10 drying-wetting cycles is plotted in the e-Gmax space, a linear relationship is observed for different constant water content levels. Remarkably, this trend is shown to be independent of the boundary conditions considered in this study or number of dryingwetting cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available