4.6 Article

Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods

Journal

DIAGNOSTICS
Volume 13, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/diagnostics13142391

Keywords

monkeypox; XGBoost; SHAP; MPXV; machine learning

Ask authors/readers for more resources

The researchers analyzed the relationship between symptoms and monkeypox using machine learning methods and found that the XGBoost model based on symptoms had the best accuracy. This study provides a new approach for the diagnosis of monkeypox.
The monkeypox virus poses a novel public health risk that might quickly escalate into a worldwide epidemic. Machine learning (ML) has recently shown much promise in diagnosing diseases like cancer, finding tumor cells, and finding COVID-19 patients. In this study, we have created a dataset based on the data both collected and published by Global Health and used by the World Health Organization (WHO). Being entirely textual, this dataset shows the relationship between the symptoms and the monkeypox disease. The data have been analyzed, using gradient boosting methods such as Extreme Gradient Boosting (XGBoost), CatBoost, and LightGBM along with other standard machine learning methods such as Support Vector Machine (SVM) and Random Forest. All these methods have been compared. The research aims to provide an ML model based on symptoms for the diagnosis of monkeypox. Previous studies have only examined disease diagnosis using images. The best performance has belonged to XGBoost, with an accuracy of 1.0 in reviews. To check the model's flexibility, k-fold cross-validation is used, reaching an average accuracy of 0.9 in 5 different splits of the test set. In addition, Shapley Additive Explanations (SHAP) helps in examining and explaining the output of the XGBoost model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available