4.7 Article

Effects of 6-Benzyladenine (6-BA) on the Filling Process of Maize Grains Placed at Different Ear Positions under High Planting Density

Journal

PLANTS-BASEL
Volume 12, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/plants12203590

Keywords

maize; 6-benzyladenine; grain weight; grain position; grain filling; starch synthesis; hormone

Categories

Ask authors/readers for more resources

Applying 6-BA can improve grain yield in densely planted maize by increasing grain weight through faster grain filling rate. It also enhances enzyme activities related to starch synthesis and alters endogenous hormone levels, promoting starch accumulation and improving grain filling. It is worth noting that inferior grains show a stronger response to exogenous 6-BA compared to superior grains.
Increasing grain weight under dense planting conditions can further improve maize yield. 6-BA is known to be involved in regulating grain development and influencing grain weight. Maize grain development is closely linked to starch accumulation and hormone levels. In this work, the effects of applying 6-BA at the flowering stage under high density on the grain filling characteristics, starch content, starch synthesis critical enzyme activity, and endogenous hormones levels of maize grains (including inferior grains (IGs) and superior grains (SGs)) of two high-yielding summer maize varieties widely cultivated in China were investigated. The findings indicated that applying 6-BA significantly improved maize yield compared to the control, mainly as a result of increased grain weight due to a faster grain filling rate. Additionally, the activities of enzymes associated with starch synthesis, including sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), and starch branching enzyme (SBE), were all increased following 6-BA application, thus facilitating starch accumulation in the grains. Applying 6-BA also increased the zeatin riboside (ZR), indole-3-acetic acid (IAA), and abscisic acid (ABA) levels, and reduced the gibberellin (GA3) level in the grains, which further improved grain filling. It is worth noting that IG had a poorer filling process than SG, possibly due to the low activities of critical enzymes for starch synthesis and imbalanced endogenous hormones levels. However, IG responded more strongly to exogenous 6-BA than SG. It appears that applying 6-BA is beneficial in improving filling characteristics, promoting starch accumulation by enhancing the activities of critical enzymes for starch synthesis, and altering endogenous hormones levels in the grains, thus improving grain filling and increasing the final grain weight and yield of maize grown under crowded conditions. These results provide theoretical and technical support for the further utilization of exogenous hormones in high-density maize production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available