4.7 Article

Transcriptional Regulation of Small Heat Shock Protein 17 (sHSP-17) by Triticum aestivum HSFA2h Transcription Factor Confers Tolerance in Arabidopsis under Heat Stress

Journal

PLANTS-BASEL
Volume 12, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/plants12203598

Keywords

heat shock transcription factor; heat stress; small HSP; wheat; total antioxidant potential; GPX; CAT; SOD

Categories

Ask authors/readers for more resources

Heat shock transcription factors (HSFs) play a significant role in thermotolerance acclimation. In this study, a putative HSF gene (HSFA2h) was identified and cloned from wheat, and its expression was found to be highest in leaf tissue under heat stress. The transgenic Arabidopsis lines expressing HSFA2h showed improved tolerance to heat stress compared with wild type. The expression of HSFA2h and its target gene (HSP18.2) was abundant in the transgenic Arabidopsis plants under heat stress, and a positive correlation between their expression was observed. The findings suggest that HSFA2h may be a potential target for modulating heat tolerance in wheat and other agriculturally important crops.
Heat shock transcription factors (HSFs) contribute significantly to thermotolerance acclimation. Here, we identified and cloned a putative HSF gene (HSFA2h) of 1218 nucleotide (acc. no. KP257297.1) from wheat cv. HD2985 using a de novo transcriptomic approach and predicted sHSP as its potential target. The expression of HSFA2h and its target gene (HSP17) was observed at the maximum level in leaf tissue under heat stress (HS), as compared to the control. The HSFA2h-pRI101 binary construct was mobilized in Arabidopsis, and further screening of T3 transgenic lines showed improved tolerance at an HS of 38 C-degrees compared with wild type (WT). The expression of HSFA2h was observed to be 2.9- to 3.7-fold higher in different Arabidopsis transgenic lines under HS. HSFA2h and its target gene transcripts (HSP18.2 in the case of Arabidopsis) were observed to be abundant in transgenic Arabidopsis plants under HS. We observed a positive correlation between the expression of HSFA2h and HSP18.2 under HS. Evaluation of transgenic lines using different physio-biochemical traits linked with thermotolerance showed better performance of HS-treated transgenic Arabidopsis plants compared with WT. There is a need to further characterize the gene regulatory network (GRN) of HSFA2h and sHSP in order to modulate the HS tolerance of wheat and other agriculturally important crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available