4.5 Article

Green-fabricated MgO nanoparticles: A potent antimicrobial and anticancer agent

Journal

JOURNAL OF KING SAUD UNIVERSITY SCIENCE
Volume 35, Issue 8, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jksus.2023.102889

Keywords

Magnesium oxide; Garlic extract; Eco-friendly synthesis; Antimicrobial activity; Cancer treatment; Oxidative stress

Ask authors/readers for more resources

This study describes a method for manufacturing MgO nanoparticles using garlic extract to minimize environmental impact. The results show that these nanoparticles exhibit high effectiveness against various microorganisms and cancer cells.
MgO nanoparticles are gaining popularity because of their potential applications in several different industries, such as bioengineering, medicine, and environmental protection. The fabrication of MgO nanoparticles with enhanced biological properties remains difficult, despite the growing interest in this area. In this paper, we describe a method that minimizes environmental impact when manufacturing MgO nanoparticles using garlic (Allium sativum L.) extract. For ages, one of the most vital functions in human nutrition and medicine has been played by garlic. Garlic also contains phytochemicals that are effective against cancer and microbes. Our goal was to increase the medicinal relevance of MgO nanoparticles while decreasing our reliance on harmful chemicals. Various characterization techniques were employed to confirm the synthesis of MgO nanoparticles, including SEM, TEM, EDX, and XRD. The study findings indicate that the synthesis of MgO nanoparticles yielded a polycrystalline cubic configuration with a crystal size of 55-60 nm. The results of the EDX analysis suggest that only Mg and O elements are present, without any detectable impurities. The efficacy of MgO nanoparticles against grampositive (Staphylococcus epidermidis), gram-negative bacteria (Escherichia coli) and a fungal pathogen (Candida albicans) was investigated. The results indicated that MgO nanoparticles exhibited high effectiveness against all three microorganisms. The study revealed that MgO nanoparticles exhibit potent anticancer properties against human liver (HepG2) and lung (A549) cancer cells. Reactive oxygen species production in cancer cells by MgO nanoparticles suggests oxidative stress pathway-mediated anticancer action. The present research highlights the significance of utilizing medicinal plants in the synthesis of nanoparticles for enhanced anticancer and microcidal properties. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available