4.7 Article

Untargeted Metabolomics and Physicochemical Analysis Revealed the Quality Formation Mechanism in Fermented Milk Inoculated with Lactobacillus brevis and Kluyveromyces marxianus Isolated from Traditional Fermented Milk

Journal

FOODS
Volume 12, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/foods12193704

Keywords

Lactobacillus brevis; Kluyveromyces marxianus; fermented milk; untargeted metabolomics; physicochemical analysis; mechanism; quality

Ask authors/readers for more resources

Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 and found that the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, resulting in improved overall quality.
Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms isolated from traditional dairy products in western nan. The results indicated that MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K. marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types, more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus growth via its metabolites, while the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism. Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell growth and metabolic pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available