4.8 Article

Biomimetic 4D printing

Journal

NATURE MATERIALS
Volume 15, Issue 4, Pages 413-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4544

Keywords

-

Funding

  1. Army Research Office [W911NF-13-0489]
  2. NSF [DMR 14-20570, DMREF 15-33985]
  3. Materials Research Science and Engineering Center, MRSEC
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1533985] Funding Source: National Science Foundation

Ask authors/readers for more resources

Shape-morphing systems can be found in many areas, including smart textiles(1), autonomous robotics(2), biomedical devices(3), drug delivery(4) and tissue engineering(5). The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls(6-10). Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available