4.8 Article

Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet

Journal

NATURE MATERIALS
Volume 15, Issue 12, Pages 1237-1242

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4752

Keywords

-

Funding

  1. JSPS [24224009]
  2. Swiss National Science Foundation [153451, 166298]
  3. European Research Council

Ask authors/readers for more resources

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets(1-11). Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature T-c, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material(12), beta-Mn-type Co8Zn8Mn4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available