4.8 Article

Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids

Journal

NATURE MATERIALS
Volume 16, Issue 2, Pages 258-263

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4800

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST) [KUS-11-009-21]
  2. Ontario Research Fund Research Excellence Program
  3. Natural Sciences and Engineering Research Council (NSERC) of Canada
  4. Connaught fund

Ask authors/readers for more resources

Bandtail states in disordered semiconductor materials result in losses in-open-circuit voltage (V-oc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher V-oc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available