4.6 Article

Applications and resource reductions in measurement-based variational quantum eigensolvers

Journal

QUANTUM SCIENCE AND TECHNOLOGY
Volume 8, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/2058-9565/ace2e6

Keywords

VQE; variational quantum eigensolver; MBQC; measurement-based quantum computing; quantum algorithms; quantum simulation; measurement-based

Ask authors/readers for more resources

We discuss the procedure for obtaining measurement-based implementations of quantum algorithms given by quantum circuit diagrams and how to reduce the required resources needed for a given measurement-based computation. This forms the foundation for quantum computing on photonic systems in the near term. To demonstrate that these ideas are well grounded we present three different problems which are solved by employing a measurement-based implementation of the variational quantum eigensolver algorithm (MBVQE). We show that by utilising native measurement-based gates rather than standard gates, such as the standard controlled not gate (CNOT), measurement-based quantum computations may be obtained that are both shallow and have simple connectivity while simultaneously exhibiting a large expressibility. We conclude that MBVQE has promising prospects for resource states that are not far from what is already available today.
We discuss the procedure for obtaining measurement-based implementations of quantum algorithms given by quantum circuit diagrams and how to reduce the required resources needed for a given measurement-based computation. This forms the foundation for quantum computing on photonic systems in the near term. To demonstrate that these ideas are well grounded we present three different problems which are solved by employing a measurement-based implementation of the variational quantum eigensolver algorithm (MBVQE). We show that by utilising native measurement-based gates rather than standard gates, such as the standard controlled not gate (CNOT), measurement-based quantum computations may be obtained that are both shallow and have simple connectivity while simultaneously exhibiting a large expressibility. We conclude that MBVQE has promising prospects for resource states that are not far from what is already available today.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available