4.8 Article

Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering

Journal

NATURE MATERIALS
Volume 15, Issue 7, Pages 775-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4600

Keywords

-

Funding

  1. Center for Excitonics, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001088]
  2. National Science Foundation [DMR-08-19762, 1122374]
  3. National Institutes of Health/National Institute of General Medical Sciences under NSF [DMR-1332208]

Ask authors/readers for more resources

On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available