4.8 Article

Porous microwells for geometry-selective, large-scale microparticle arrays

Journal

NATURE MATERIALS
Volume 16, Issue 1, Pages 139-146

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4747

Keywords

-

Funding

  1. National Science Foundation [CMMI-1120724]
  2. Samsung Scholarship
  3. National Institutes of Health [GM092804]
  4. MRSEC Program of the National Science Foundation [DMR-1419807]

Ask authors/readers for more resources

Large-scale microparticle arrays (LSMAs) are key for material science and bioengineering applications. However, previous approaches suffer from trade-offs between scalability, precision, specificity and versatility. Here, we present a porous microwell-based approach to create large-scale microparticle arrays with complex motifs. Microparticles are guided to and pushed into microwells by fluid flow through small open pores at the bottom of the porous well arrays. A scaling theory allows for the rational design of LSMAs to sort and array particles on the basis of their size, shape, or modulus. Sequential particle assembly allows for proximal and nested particle arrangements, as well as particle recollection and pattern transfer. We demonstrate the capabilities of the approach by means of three applications: high-throughput single-cell arrays; microenvironment fabrication for neutrophil chemotaxis; and complex, covert tags by the transfer of an upconversion nanocrystal-laden LSMA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available