4.8 Article

Lattice engineering through nanoparticle-DNA frameworks

Journal

NATURE MATERIALS
Volume 15, Issue 6, Pages 654-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4571

Keywords

-

Funding

  1. US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]
  2. National Institute of Health [AG029979]

Ask authors/readers for more resources

Advances in self-assembly over the past decade have demonstrated that nano-and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. This approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available