4.6 Review

Strong coupling in plasmonic metal nanoparticles

Journal

NANO CONVERGENCE
Volume 10, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1186/s40580-023-00383-5

Keywords

Light-matter interaction; Strong coupling; Polaritons; Metal nanoparticle; Plasmonics

Ask authors/readers for more resources

The study of strong coupling between light and matter has gained significant attention in recent years due to its potential applications in diverse fields. Plasmonic cavities, particularly colloidal metal nanoparticles, offer an attractive alternative for ultracompact polaritonic systems at room temperature. This review highlights the advantages of colloidal metal nanoparticles as plasmonic cavities, focusing on their facile synthesis, tunable plasmonic properties, and easy integration with excitonic materials. The review explores recent examples of strong coupling in single nanoparticles, dimers, nanoparticle-on-a-mirror configurations, and other types of nanoparticle-based resonators, revealing their potential in nanophotonic applications.
The study of strong coupling between light and matter has gained significant attention in recent years due to its potential applications in diverse fields, including artificial light harvesting, ultraefficient polariton lasing, and quantum information processing. Plasmonic cavities are a compelling alternative of conventional photonic resonators, enabling ultracompact polaritonic systems to operate at room temperature. This review focuses on colloidal metal nanoparticles, highlighting their advantages as plasmonic cavities in terms of their facile synthesis, tunable plasmonic properties, and easy integration with excitonic materials. We explore recent examples of strong coupling in single nanoparticles, dimers, nanoparticle-on-a-mirror configurations, and other types of nanoparticle-based resonators. These systems are coupled with an array of excitonic materials, including atomic emitters, semiconductor quantum dots, two-dimensional materials, and perovskites. In the concluding section, we offer perspectives on the future of strong coupling research in nanoparticle systems, emphasizing the challenges and potentials that lie ahead. By offering a thorough understanding of the current state of research in this field, we aim to inspire further investigations and advances in the study of strongly coupled nanoparticle systems, ultimately unlocking new avenues in nanophotonic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available