4.8 Article

Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

Journal

NATURE GEOSCIENCE
Volume 9, Issue 6, Pages 452-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO2719

Keywords

-

Funding

  1. NASA GSFC Science Task Group funds
  2. NASA Astrobiology Institute grant [NNX15AE05G]
  3. NASA HIDEE Program
  4. NASA [NNX15AE05G, 805157] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Nitrogen is a critical ingredient of complex biological molecules(1). Molecular nitrogen, however, which was outgassed into the Earth's early atmosphere(2), is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation(3,4). Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun-so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N-2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available