4.7 Article

Traffic flow prediction model based on improved variational mode decomposition and error correction

Journal

ALEXANDRIA ENGINEERING JOURNAL
Volume 76, Issue -, Pages 361-389

Publisher

ELSEVIER
DOI: 10.1016/j.aej.2023.06.008

Keywords

Traffic flow; Prediction; Secondary decomposition; Improved variational mode decomposition; Error correction

Ask authors/readers for more resources

This paper proposes a new TFD prediction model based on CEEMDAN, NNe-tEn, NVMD, ARO-KELM, and EC algorithms to handle the complexity of TFD. The experimental results show that the proposed model outperforms the other six comparison models in terms of prediction accuracy.
With the aggravation of traffic congestion, traffic flow data (TFD) prediction is very important for traffic managers to control traffic congestion and for traffic participants to plan their trips. However, its effective prediction faces great difficulties and challenges. Aiming at handling complexity of TFD, a new TFD prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), neural network estimation time entropy (NNe-tEn), variational mode decomposition (VMD) improved by northern goshawk optimization (NGO) algorithm, kernel extreme learning machine (KELM) improved by artificial rabbits optimization (ARO) algorithm and error correction (EC) is proposed. Aiming at choosing the decomposition lay-ers and penalty coefficient of VMD, VMD improved by NGO, named NVMD, is proposed. Aiming at handling the problem of selecting KELM parameters, KELM improved by ARO, ARO-KELM, is proposed. Firstly, CEEMDAN is used to decompose TFD into a limited number of IMF com-ponents. NNetEn is used to divide IMF components into high-and low-complexity components. The sum of high-complexity components is selected for secondary decomposition by NVMD. Then ARO-KELM is used to predict all decomposed components. Finally, error correction is introduced to further improve the prediction accuracy. TFD from England highway is used in the experiments. Taking TFD I as an example, the RMSE, MAE, MAPE and R2 are 4.5682, 3.3104, 0.0458 and 0. 9997 respectively. The results show that the proposed model is superior to the other six comparison models at 99% confidence level, which provides a theoretical and data basis for controlling traffic jams, accidents and pollution.& COPY; 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available