4.4 Article

Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase

Journal

CHEMICAL PAPERS
Volume 69, Issue 10, Pages 1298-1311

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1515/chempap-2015-0142

Keywords

Fe3O4 nanoparticles; porcine pancreas lipase; covalent attachment; physical adsorption; cross-linking

Funding

  1. National Natural Science Foundation of China [51473046]

Ask authors/readers for more resources

In this paper, Fe3O4 nanoparticles coated with mesoporous silica were prepared successfully, noted as Fe3O4 at the mobile composition of matter No. 41 (MCM-41). Also, Fe3O4 at MCM-41 was grafted by both 3-aminopropyltriethoxysilane (APTS) and 3-chloropropyltriethoxysilane (CPS), noted as Fe3O4 at MCM-41/APTS and Fe3O4 at MCM-41/CPS. The compounds were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetry and N-2 adsorption/desorption. Then, the enzyme, porcine pancreas lipase (PPL), was immobilized onto these modified nanoparticles by covalent attachment, physical adsorption and cross-linking, noted as Fe3O4 at MCM-41/CPS-PPL, Fe3O4 at MCM-41-PPL and Fe3O4 at MCM-41/APTS-PPL, respectively. The results showed that Fe3O4 at MCM-41/CPS was the best nanomaterial for PPL immobilization, exhibiting enhanced immobilization efficiency (maximum 96 %), maximum relative activity (up to 96 %), high stability and reusability (83 % 56 days and 86.7 % ten cycles). Additionally, it offered some other advantages, such as easy recycling and reuse, complying with the trend of green chemistry. Therefore, Fe3O4 at MCM-41/CPS in combination with a relevant method can be proposed for commercial applications. (C) 2015 Institute of Chemistry, Slovak Academy of Sciences

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available