4.6 Article

AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus Arthrobotrys flagrans

Journal

MICROBIOLOGY SPECTRUM
Volume -, Issue -, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.00186-23

Keywords

nematode-trapping fungi; Arthrobotrys flagrans; genome; AfLaeA; chlamydospore; pathogenicity; metabolism

Categories

Ask authors/readers for more resources

This study reveals the functions of the LaeA gene in A. flagrans, including mycelial growth, spore production, pathogenicity, secondary metabolism, and energy metabolism. Additionally, protein-protein interactions between AfLaeA and other eight proteins were detected. These findings are important for understanding the regulatory role of AfLaeA in A. flagrans and developing efficient nematode biocontrol agents.
The regulation of biological functions, such as the secondary metabolism, development, and pathogenicity of LaeA, has been reported in multiple fungi. But to date, no study on LaeA in nematode-trapping fungi has been reported. Arthrobotrys flagrans (Duddingtonia flagrans) is a typical nematode-trapping fungus which has been used for nematode biocontrol. The global regulator LaeA is widely distributed in filamentous fungi and plays a crucial role in secondary metabolism and development in addition to pathogenicity in fungal pathogens. In this study, the chromosome-level genome of A. flagrans CBS 565.50 was sequenced and homologous sequences of LaeA were identified in A. flagrans. A. flagrans LaeA (AfLaeA) knockout resulted in slower hyphal growth and a smoother hyphal surface. Importantly, deletion of AfLaeA resulted in the absence of chlamydospores and attenuated glycogen and lipid accumulation in hyphae. Similarly, disruption of the AfLaeA gene led to fewer traps and electron-dense bodies, lower protease activity, and a delay in capturing nematodes. The AfLaeA gene had a large effect on the secondary metabolism of A. flagrans, and both the deletion and overexpression of AfLaeA could yield new compounds, whereas some compounds were lost due to the absence of the AfLaeA. Protein-protein interactions between AfLaeA and another eight proteins were detected. Furthermore, transcriptome data analysis showed that 17.77% and 35.51% of the genes were influenced by the AfLaeA gene on days 3 and 7, respectively. AfLaeA gene deletion resulted in the higher expression level of the artA gene cluster, and multiple differentially expressed genes involved in glycogen and lipid synthesis and metabolism showed opposite expression patterns in wild-type and & UDelta;AfLaeA strains. In summary, our results provide novel insights into the functions of AfLaeA in mycelial growth, chlamydospore production, pathogenicity, secondary metabolism, and energy metabolism in A. flagrans.IMPORTANCE The regulation of biological functions, such as the secondary metabolism, development, and pathogenicity of LaeA, has been reported in multiple fungi. But to date, no study on LaeA in nematode-trapping fungi has been reported. Moreover, it has not been investigated whether or not LaeA is involved in energy metabolism and chlamydospore formation has not been investigated. Especially in the formation mechanism of chlamydospores, several transcription factors and signaling pathways are involved in the production of chlamydospores, but the mechanism of chlamydospore formation from an epigenetic perspective has not been revealed. Concurrently, an understanding of protein-protein interactions will provide a broader perspective on the regulatory mechanism of AfLaeA in A. flagrans. This finding is critical for understanding the regulatory role of AfLaeA in the biocontrol fungus A. flagrans and establishes a foundation for developing high-efficiency nematode biocontrol agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available