4.7 Article

Effect of lace-up ankle brace on the tibiotalar and subtalar joint during the landing

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2023.1255944

Keywords

dual fluoroscopic imaging system; ankle brace; tibiotalar joint; subtalar joint; in vivo kinematics

Ask authors/readers for more resources

This study investigated the effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing, using a high-speed dual fluoroscopic imaging system and magnetic resonance imaging.
Objective: Ankle braces can affect the kinematics of the ankle joint during landing tasks. Previous studies were primarily relied on traditional marker-based motion capture systems, which pose limitations in non-invasively capturing the motion of the talus bone. The effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing remains unknown. This study used a high-speed dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI) to investigate effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing.Methods: Fourteen healthy participants were recruited for this study. During the experiment, static three-dimensional MRI data were collected for each participant, and 3D ankle joint models for the calcaneus, talus, and tibia were constructed. The DFIS was used to capture the images of each participant performing a single-leg landing-jump task at a height of 40 cm. The images were captured once with and without a brace in the fatigue condition, which was induced by running. The six-degree-of-freedom (6DOF) kinematic data were obtained by 2D-3D registration.Results: The flexion-extension range of motion (ROM) (42.73 +/- 4.76 degrees vs. 38.74 +/- 5.43 degrees, p = 0.049) and anterior-posterior translation ROM (16.86 +/- 1.74 mm vs. 15.03 +/- 1.73 mm, p = 0.009) of the tibiotalar joint were decreased. The maximum inversion angle (-3.71 +/- 2.25 degrees vs. 2.11 +/- 1.83 degrees, p = 0.047) of the subtalar joint was decreased.Conclusion: The ankle brace limited the flexion-extension ROM of the tibiotalar joints and the inversion angle of the subtalar joint during landing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available