4.7 Article

Healing cracks in additively manufactured NiTi shape memory alloys

Journal

VIRTUAL AND PHYSICAL PROTOTYPING
Volume 18, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17452759.2023.2246437

Keywords

Laser powder bed fusion; spark plasma sintering; NiTi alloys; superelasticity; healing crack; >

Ask authors/readers for more resources

Through spark plasma sintering (SPS) method, directional cracks in [001] textured L-PBF NiTi shape memory alloy were successfully repaired, resulting in improved mechanical properties and superelasticity, addressing the limitations of hot cracking.
The pursuit of enhancing NiTi superelasticity through laser powder bed fusion (L-PBF) and [001] texture creation poses a challenge due to increased susceptibility to hot cracking in the resulting microstructure with columnar grains. This limitation restricts NiTi's application and contributes to material waste. To overcome this, we introduce a pioneering approach: utilising spark plasma sintering (SPS) to heal directional cracks in [001] textured L-PBF NiTi shape memory alloy. Diffusion bonding and oxygen utilisation for Ti2NiOx formation was found to successfully heal the cracks. SPS enhances mechanical properties, superelasticity at higher temperatures, and two-way shape memory strain during thermomechanical cycling. This work provides an alternative solution for healing cracks in L-PBF parts, enabling the sustainable reuse of cracked materials. By implementing SPS, this approach effectively addresses hot cracking limitations, expanding the application potential of L-PBF NiTi parts while improving their functional and mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available