4.8 Article

Structural basis of laminin binding to the LARGE glycans on dystroglycan

Journal

NATURE CHEMICAL BIOLOGY
Volume 12, Issue 10, Pages 810-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEMBIO.2146

Keywords

-

Funding

  1. Wellcome Trust Senior Investigator Award [101748/Z/13/Z]
  2. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center grant [1U54NS053672]
  3. Wellcome Trust [101748/Z/13/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

Dystroglycan is a highly glycosylated extracellular matrix receptor with essential functions in skeletal muscle and the nervous system. Reduced matrix binding by alpha-dystroglycan (alpha-DG) due to perturbed glycosylation is a pathological feature of several forms of muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) synthesizes the matrix-binding heteropolysaccharide [-glucuronic acid-beta 1,3-xylose-alpha 1,3-](n). Using a dual exoglycosidase digestion, we confirm that this polysaccharide is present on native alpha-DG from skeletal muscle. The atomic details of matrix binding were revealed by a high-resolution crystal structure of laminin-G-like (LG) domains 4 and 5 (LG4 and LG5) of laminin-alpha 2 bound to a LARGE-synthesized oligosaccharide. A single glucuronic acid-beta 1,3-xylose disaccharide repeat straddles a Ca2+ ion in the LG4 domain, with oxygen atoms from both sugars replacing Ca2+-bound water molecules. The chelating binding mode accounts for the high affinity of this protein-carbohydrate interaction. These results reveal a previously uncharacterized mechanism of carbohydrate recognition and provide a structural framework for elucidating the mechanisms underlying muscular dystrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available