4.7 Article

Role of Temporal Zn Fertilization along with Zn Solubilizing Bacteria in Enhancing Zinc Content, Uptake, and Zinc Use Efficiency in Wheat Genotypes and Its Implications for Agronomic Biofortification

Journal

AGRONOMY-BASEL
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy13112677

Keywords

Zn content; Zn uptake; Zn use efficiency; wheat genotypes; Zn fertilization; ZSB

Ask authors/readers for more resources

This study investigated the impact of different wheat genotypes, zinc application methods, and the use of bacterial inoculant on zinc content and yield in wheat. The results showed that the TRB-72-311 genotype with 0.5% foliar zinc application and bacterial inoculant significantly increased zinc content, uptake, and grain quality in wheat.
Wheat (Triticum aestivum L.) is a vital cereal crop for food security in Pakistan. In Zn-deficient soils, its productivity and quality suffer, affecting grain yield, Zn bioavailability, and nutrition, which can lead to malnutrition. Field experiments were conducted using factorial randomized block design at the Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan to evaluate the impact of wheat genotypes (G1-TRB-72-311 synthetic hexaploid, G2-TRB-89-348 advanced line, and G3-Pirsabak-19-approved variety), Zn application methods (AM1: no Zn application, AM2: seed priming with 0.5% Zn, AM3: soil application of 10 kg ha-1 Zn, and AM4: foliar application of 0.5% Zn), and the experiment also explored the use of ZSB (BF1: with bacteria, BF0: without bacteria) to cope with Zn deficiency. The study revealed significant impacts on wheat's Zn content, uptake, and nutrient efficiency, arising from genotypes variance, Zn application approaches, and ZSB. TRB-72-311 synthetic hexaploid genotype with 0.5% foliar Zn and ZSB excelled, enhancing grain (17.8%) and straw Zn (23.1%), increasing total Zn uptake (55.0%), reducing grain phytic acid (11.7%), and boosting Zn-related efficiencies in wheat. These results prompt further discussion regarding the potential implications for agricultural practices. In conclusion, utilizing the TRB-72-311 genotype with 0.5% foliar Zn application and ZSB enhances wheat's Zn content, uptake, grain quality, and addresses malnutrition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available