4.7 Article

Supplementation of Thymoquinone Nanoparticles to Semen Extender Boosts Cryotolerance and Fertilizing Ability of Buffalo Bull Spermatozoa

Journal

ANIMALS
Volume 13, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/ani13182973

Keywords

cryopreserved semen; buffalo; sperm quality and kinematics; apoptotic; acrosome exocytosis; thymoquinone nanoparticle

Ask authors/readers for more resources

In this study, the effects of Thymoquinone nanoparticles (TQNPs) on frozen-thawed buffalo sperm were investigated. TQNPs supplementation improved sperm quality, including membrane integrity and progressive motility. TQNPs also reduced oxidative stress and improved antioxidant capacity. Additionally, TQNPs decreased acrosome exocytosis and apoptosis-like changes. The use of TQNPs-treated sperm resulted in higher non-return rates in buffalo cows, indicating improved fertility.
Thymoquinone nanoparticles (TQNPs) are broadly utilized in numerous pharmaceutical applications. In the present study, we tested the effects of TQNP supplementation on sperm quality and kinematics, acrosome exocytosis, oxidative biomarkers, apoptosis-like and morphological changes of frozen-thawed buffalo sperm, as well as the fertilizing capacity. Semen was collected from buffalo bulls, diluted (1:10; semen/extender), and divided into five aliquots comprising various concentrations of TQNP 0 (CON), 12.5 (TQNP12.5), 25 (TQNP25), 37.5 (TQNP37.5), and 50 (TQNP50) mu g/mL, and then cryopreserved and stored in liquid nitrogen (-196 degrees C). The results revealed that TQNPs (25 to 50 mu g/mL) provided the most optimal results in terms of membrane integrity (p < 0.001) and progressive motility (p < 0.01). In contrast, TQNP50 resulted in a greater post-thawed sperm viability (p = 0.02) compared with other groups. The addition of TQNPs to the extender had no discernible effects on sperm morphology measures. Sperm kinematic motion was significantly improved in the TQNP50 group compared to the control group (p < 0.01). TQNPs effectively reduced the content of H2O2 and MDA levels and improved the total antioxidant capacity of post-thawed extended semen (p < 0.01). The addition of TQNP significantly increased the number of intact acrosomes (p < 0.0001) and decreased the number of exocytosed acrosomes (p < 0.0001). A significant reduction in apoptosis-like changes was observed in TQNP groups. The non-return rates of buffalo cows inseminated with TQNP50-treated spermatozoa were higher than those in the control group (p < 0.05; 88% vs. 72%). These findings suggested that the freezing extender supplemented with TQNPs could effectively enhance the cryotolerance and fertility of buffalo sperm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available