4.8 Article

Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

Journal

NATURE
Volume 533, Issue 7603, Pages 420-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature17946

Keywords

-

Funding

  1. US National Institutes of Health (NIH) [R01 EB022376]
  2. F-Prime Biomedical Research Initiative [A28161]
  3. Howard Hughes Medical Institute
  4. Ruth L. Kirchstein National Research Service [F32 GM 112366-2]
  5. Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (NSERC PGS-D)
  6. Harvard Biophysics NIH training grant [T32 GM008313]
  7. Ruth L. Kirschstein National Research Service Award Postdoctoral Fellow [F32 GM 106601-2]

Ask authors/readers for more resources

Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction1,2. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks(1,2). Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C -> T (or G -> A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second-and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of similar to 15-75% of total cellular DNA with minimal (typically <= 1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available