4.8 Article

Observation of polar vortices in oxide superlattices

Journal

NATURE
Volume 530, Issue 7589, Pages 198-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature16463

Keywords

-

Funding

  1. Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]
  2. National Science Foundation under the MRSEC program [DMR-1420620]
  3. National Science Foundation [DMR-1210588, DMR-1451219]
  4. US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357]
  5. Army Research Office [W911NF-14-1-0104]
  6. Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]
  7. US Department of Energy, Office of Basic Energy Sciences [DE-SC0012375]
  8. EPSRC [EP/J017825/1] Funding Source: UKRI
  9. Engineering and Physical Sciences Research Council [EP/J017825/1] Funding Source: researchfish
  10. Direct For Mathematical & Physical Scien
  11. Division Of Materials Research [1210588, 1451219] Funding Source: National Science Foundation

Ask authors/readers for more resources

The complex interplay of spin, charge, orbital and lattice degrees of freedom provides a plethora of exotic phases and physical phenomena(1-5). In recent years, complex spin topologies have emerged as a consequence of the electronic band structure and the interplay between spin and spin-orbit coupling in materials-(6,7). Here we produce complex topologies of electrical polarization-namely, nanometre-scale vortex-antivortex (that is, clockwise-anticlockwise) arrays that are reminiscent of rotational spin topologies(6)-by making use of the competition between charge, orbital and lattice degrees of freedom in superlattices of alternating lead titanate and strontium titanate layers. Atomic-scale mapping of the polar atomic displacements by scanning transmission electron microscopy reveals the presence of long-range ordered vortex-antivortex arrays that exhibit nearly continuous polarization rotation. Phase-field modelling confirms that the vortex array is the low-energy state for a range of superlattice periods. Within this range, the large gradient energy from the vortex structure is counterbalanced by the corresponding large reduction in overall electrostatic energy (which would otherwise arise from polar discontinuities at the lead titanate/strontium titanate interfaces) and the elastic energy associated with epitaxial constraints and domain formation. These observations have implications for the creation of new states of matter (such as dipolar skyrmions, hedgehog states) and associated phenomena in ferroic materials, such as electrically controllable chirality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available