4.8 Article

New CRISPR-Cas systems from uncultivated microbes

Journal

NATURE
Volume 542, Issue 7640, Pages 237-241

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature21059

Keywords

-

Funding

  1. EMBO fellowship
  2. US National Science Foundation
  3. German Science Foundation [DFG PR 1603/1-1]
  4. Allen Distinguished Investigator Program, through The Paul G. Allen Frontiers Group
  5. National Science Foundation [MCB-1244557]
  6. Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area - US Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA(1,2). Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences(3,4). The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research(5). However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms(6,7). Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available