4.6 Article

Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2

Journal

CELLS
Volume 12, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/cells12141839

Keywords

DNA repair; DNA dioxygenase ABH2; DNA methylation; conformational dynamics; fluorescent spectroscopy; presteady-state kinetics; stopped-flow

Categories

Ask authors/readers for more resources

ABH2 is an important protein involved in DNA repair and the oxidation of 5-methylcytosine. This study investigated the role of active-site amino acid residues in the substrate specificity of ABH2 and revealed their significant impact on the catalytic activity of the enzyme.
Human Fe(II)/& alpha;-ketoglutarate-dependent dioxygenase ABH2 plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases, e.g., N-1-methyladenine (m(1)A), N-3-methylcytosine (m(3)C), and some etheno derivatives. Moreover, ABH2 is capable of a less efficient oxidation of an epigenetic DNA mark called 5-methylcytosine (m(5)C), which typically is a specific target of DNA dioxygenases from the TET family. In this study, to elucidate the mechanism of the substrate specificity of ABH2, we investigated the role of several active-site amino acid residues. Functional mapping of the lesion-binding pocket was performed through the analysis of the functions of Tyr122, Ile168, and Asp173 in the damaged base recognition mechanism. Interactions of wild-type ABH2, or its mutants Y122A, I168A, or D173A, with damaged DNA containing the methylated base m(1)A or m(3)C or the epigenetic marker m(5)C were analyzed by molecular dynamics simulations and kinetic assays. Comparative analysis of the enzymes revealed an effect of the substitutions on DNA binding and on catalytic activity. Obtained data clearly demonstrate the effect of the tested amino acid residues on the catalytic activity of the enzymes rather than the DNA-binding ability. Taken together, these data shed light on the molecular and kinetic consequences of the substitution of active-site residues for the mechanism of the substrate recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available