4.8 Article

Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex

Journal

NATURE
Volume 534, Issue 7608, Pages 562-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature18595

Keywords

-

Funding

  1. CIHR [MOP-115066]
  2. NSERC [RGPIN 435607-13]
  3. Ontario Early Researcher Award [ER-13-09-116]
  4. Canada Research Chair
  5. NIH [1U19AI117905, R01 GM020501, R01 AI101436]
  6. University of Toronto
  7. Ontario Graduate Scholarships
  8. NSERC USRA
  9. NSERC
  10. National Research Council of Canada
  11. CIHR
  12. Province of Saskatchewan
  13. Western Economic Diversification Canada
  14. University of Saskatchewan
  15. US Department of Energy (Office of Basic Energy Sciences) through the Integrated Diffraction Analysis Technologies program [DE-AC02-05CH11231]
  16. DOE Office of Biological and Environmental Research
  17. NIH project MINOS [R01GM105404]

Ask authors/readers for more resources

Fertilization is an essential biological process in sexual reproduction and comprises a series of molecular interactions between the sperm and egg(1,2). The fusion of the haploid spermatozoon and oocyte is the culminating event in mammalian fertilization, enabling the creation of a new, genetically distinct diploid organism(3,4). The merger of two gametes is achieved through a two-step mechanism in which the sperm protein IZUMO1 on the equatorial segment of the acrosome-reacted sperm recognizes its receptor, JUNO, on the egg surface(4-6). This recognition is followed by the fusion of the two plasma membranes. IZUMO1 and JUNO proteins are indispensable for fertilization, as constitutive knockdown of either protein results in mice that are healthy but infertile(5,6). Despite their central importance in reproductive medicine, the molecular architectures of these proteins and the details of their functional roles in fertilization are not known. Here we present the crystal structures of human IZUMO1 and JUNO in unbound and bound conformations. The human IZUMO1 structure exhibits a distinct boomerang shape and provides structural insights into the IZUMO family of proteins(7). Human IZUMO1 forms a high-affinity complex with JUNO and undergoes a major conformational change within its N-terminal domain upon binding to the egg-surface receptor. Our results provide insights into the molecular basis of sperm-egg recognition, cross-species fertilization, and the barrier to polyspermy, thereby promising benefits for the rational development of non-hormonal contraceptives and fertility treatments for humans and other mammals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available