4.6 Review

Impact of Imaging Biomarkers and AI on Breast Cancer Management: A Brief Review

Journal

CANCERS
Volume 15, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/cancers15215216

Keywords

breast cancer; BI-RADS; molecular imaging; biomarkers; PET-CT

Categories

Ask authors/readers for more resources

Artificial intelligence has become an integral part of the medical field, particularly in the diagnosis and analysis of breast cancer. Machine learning and deep learning techniques are utilized to automate diagnosis, segment data, and predict tumor response to chemotherapy. Recent research has shown promising results with deep learning algorithms, indicating the potential to enhance diagnostic accuracy and efficiency. Additionally, non-ionizing imaging modalities play a significant role in the diagnosis process.
Simple Summary Artificial intelligence (AI) has seamlessly integrated into the medical field, especially in diagnostic imaging, thanks to ongoing AI advancements. It is widely used in various medical applications. In the context of breast cancer (BC), machine learning and deep learning are extensively employed for automating diagnosis, segmenting relevant data, and predicting pre-treatment tumor response to new adjuvant chemotherapy (NAC). Recent research has shown promising results with deep learning algorithms in BC diagnosis, accurately identifying specific features, demonstrating AI's potential to enhance BC diagnosis and analysis precision and efficiency. Additionally, utilizing non-ionized modalities, apart from ionized mammograms, has a substantial impact on the diagnosis process.Abstract Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating communication between radiologists and clinicians; however, an update is now imperative to encompass the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review article, we provide a concise history of BI-RADS, delve into advanced mammography techniques, ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging (MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor aims to enhance radiologists' proficiency in catering to the personalized needs of breast cancer patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer, as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists' capabilities and ameliorating patient outcomes in the realm of breast cancer management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available