4.6 Article

Molecular Subtypes and Tumor Microenvironment Characteristics of Small-Cell Lung Cancer Associated with Platinum-Resistance

Journal

CANCERS
Volume 15, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/cancers15143568

Keywords

small-cell lung cancer; molecular subtype; endothelial-to-mesenchymal transition; immune infiltration; platinum resistance

Categories

Ask authors/readers for more resources

The researchers analyzed the subtypes of small-cell lung cancer (SCLC) and found that ASCL1+, inflammatory, NEUROD1, and POU2F3+ subtypes were associated with RB1/TP53 mutation, CD8+/PD-L1+ T cell infiltration and endothelial-to-mesenchymal transition, neurotransmission process activation, and epithelial-to-mesenchymal transition, respectively. They also found that endothelial-to-mesenchymal transition was common in platinum-resistant SCLC. Through high-throughput screening, they discovered that the BET inhibitor JQ1 was effective against platinum resistance mediated by endothelial-to-mesenchymal transition, suggesting it as a potential novel treatment for overcoming platinum resistance.
Simple Summary Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their therapeutic implications remain unclear. We dissected SCLC subtypes to delineate the tumor microenvironment (TME) implicated in platinum-drug resistance: ASCL1+ (SCLC-A) subtype of the neuroendocrine type resembled RB1/TP53-mutant non-SCLC; inflammatory (SCLC-I) subtype presented CD8+/PD-L1+ T-cell infiltration and endothelial-to-mesenchymal transition (EndMT); NEUROD1 (SCLC-N) subtype showed neurotransmission process activation; and POU2F3+ (SCLC-P) subtype showed upregulated epithelial-to-mesenchymal transition (EMT). Meanwhile, the EndMT population was abundant in platinum-resistant SCLC. To overcome platinum resistance, we interrogated drug candidates through high-throughput screening. Cell cycle inhibitors were no longer susceptible to platinum resistance, as opposed to SCLC-A/N. The bromodomain and extra-terminal (BET) inhibitor JQ1 exhibited sensitivity to EndMT promoted by platinum resistance. BET inhibitors are therefore novel therapeutic candidates for overcoming platinum resistance. Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their clinical relevance and therapeutic implications are not fully understood. Thus, we aimed to refine molecular subtypes and to uncover therapeutic targets. We classified the subtypes based on gene expression (n = 81) and validated them in our samples (n = 87). Non-SCLC samples were compared with SCLC subtypes to identify the early development stage of SCLC. Single-cell transcriptome analysis was applied to dissect the TME of bulk samples. Finally, to overcome platinum resistance, we performed drug screening of patient-derived cells and cell lines. Four subtypes were identified: the ASCL1+ (SCLC-A) subtype identified as TP53/RB-mutated non-SCLC representing the early development stage of SCLC; the immune activation (SCLC-I) subtype, showing high CD8+/PD-L1+ T-cell infiltration and endothelial-to-mesenchymal transition (EndMT); the NEUROD1 (SCLC-N) subtype, which showed neurotransmission process; and the POU2F3+ (SCLC-P) subtype with epithelial-to-mesenchymal transition (EMT). EndMT was associated with the worst prognosis. While SCLC-A/N exhibited platinum sensitivity, the EndMT signal of SCLC-I conferred platinum resistance. A BET inhibitor suppressed the aggressive angiogenesis phenotype of SCLC-I. We revealed that EndMT development contributed to a poor outcome in SCLC-I. Moreover, heterogenous TME development facilitated platinum resistance. BET inhibitors are novel candidates for overcoming platinum resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available