4.7 Article

First-principles calculation of bonding and hydrogen trapping mechanism of Fe3C/α-Fe interface

Journal

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
Volume 26, Issue -, Pages 6782-6793

Publisher

ELSEVIER
DOI: 10.1016/j.jmrt.2023.09.074

Keywords

First -principles calculation; Pearlite; Interface properties; Fe3C/alpha-Fe interface; Hydrogen trapping

Ask authors/readers for more resources

The bonding and hydrogen trapping mechanism of Fe3C/α-Fe interface with three different orientation relationships were investigated using first-principles calculation method. The results showed that the Isaichev orientation had the strongest bonding strength and stability, and exhibited the best hydrogen trapping ability.
The Fe3C/alpha-Fe interface in pearlite is the main hydrogen trapping site. The first-principles calculation method based on density functional theory was employed to investigate the bonding and hydrogen trapping mechanism of the Fe3C/alpha-Fe interface with three different orientation relationships, specifically the Bagaryatsky orientation, Isaichev orientation, and Pitsch-Petch orientation. The results showed that by calculating the interface energy and separation work, the theoretical bonding strength and stability of the three interfaces presented the following order: Isaichev orientation > Pitsch-Petch orientation > Bagaryatsky orientation. Hydrogen segregation energy revealed that H atoms were more likely to be trapped at the Fe3C/alpha-Fe interface region and the hydrogen trap ability of three interfaces was in the following order: Isaichev orientation > Pitsch-Petch orientation > Bagaryatsky orientation. The maximum absolute value of segregation energy was found at the interface with Isaichev orientation, which was 0.38 eV. The differential charge density, density of states, and Mulliken bond population calculations revealed that the formation of the interface was related to the covalent bond between C atoms in cementite and Fe atoms in ferrite, and affected by the spatial distribution of C atoms. The C atoms also repelled the H atoms, so the strength of H-Fe bond was identified as the dominant factor of hydrogen trapping behavior. Overall, these insights can potentially aid in improving the design and performance of materials with pearlite structures.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available